skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, M. Elliot"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sedimentary basins record crustal-scale tectonic processes related to the construction and demise of orogenic belts, making them an invaluable archive for the reconstruction of the evolution of the North American Cordillera. In southwest Montana, USA, the Renova Formation, considered to locally represent the earliest accumulation following Mesozoic−Cenozoic compressional deformation, is widespread but remains poorly dated, and its origin is debated. Herein, we employed detrital zircon U-Pb and (U-Th)/He double dating and sanidine 40Ar/39Ar geochronology in the context of decimeter-scale measured stratigraphic sections in the Renova Formation of the Muddy Creek Basin to determine basin evolution and sediment provenance and place the basin-scale record within a regional context to illuminate the lithospheric processes driving extension and subsidence. The Muddy Creek Basin is an extensional half graben in southwest Montana that is ∼22 km long and ∼7 km wide, with a >800-m-thick sedimentary package. Basin deposition began ca. 49 Ma, as marked by multiple ignimbrites sourced from the Challis volcanic field, which are overlain by a tuffaceous fluvial section. Fluvial strata are capped by a 46.8 Ma Challis ignimbrite constrained by sanidine 40Ar/39Ar dating. An overlying fossiliferous limestone records the first instance of basinal ponding, which was coeval with the cessation of delivery of Challis volcanics−derived sediment into the Green River Basin. We attribute initial ponding to regional drainage reorganization and damning of the paleo−Idaho River due to uplift and doming of the southern Absaroka volcanic province, resulting in its diversion away from the Green River Basin and backfilling of the Lemhi Pass paleovalley. Detrital zircon maximum depositional ages and sanidine 40Ar/39Ar ages show alternating fluvial sandstone and lacustrine mudstone deposition from 46 Ma to 40 Ma in the Muddy Creek Basin. Sediment provenance was dominated by regionally sourced, Challis volcanics−aged and Idaho Batholith−aged grains, while detrital zircon (U-Th)/He (ZHe) data are dominated by Eocene cooling ages. Basin deposition became fully lacustrine by ca. 40 Ma, based on an increasing frequency of organic-rich mudstone with rare interbedded sandstone. Coarse-grained lithofacies became prominent again starting ca. 37 Ma, coeval with a major shift in sediment provenance due to extension and local footwall unroofing. Detrital zircon U-Pb and corresponding ZHe ages from the upper part of the section are predominantly Paleozoic in age, sourced from the Paleozoic sedimentary strata exposed in the eastern footwall of the Muddy Creek detachment fault. Paleocurrents shift from south- to west-directed trends, supporting the shift to local sources, consistent with initiation of the Muddy Creek detachment fault. Detrital zircon maximum depositional ages from the youngest strata in the basin suggest deposition continuing until at least 36 Ma. These data show that extension in the Muddy Creek Basin, which we attribute to continued lithospheric thermal weakening, initiated ∼10 m.y. later than in the Anaconda and Bitterroot metamorphic core complexes. This points to potentially different drivers of extension in western Montana and fits previously proposed models of a regional southward sweep of extension related to Farallon slab removal. 
    more » « less
  2. Weathering, erosion, and sediment transport in modern landscapes may be investigated via direct observation of attributes such as elevation, relief, bedrock lithology, climate, drainage organization, watershed extent, and others. Studies of ancient landscape evolution lack this synoptic perspective, however, and instead must rely more heavily on downstream records of fluvial deposits. Provenance analysis based on detrital grain ages has greatly enhanced the utility of such records but has often focused broadly on regional to continental scales. This approach may overlook important details of localized watersheds, which could lead to significant misinterpretation of past sediment dispersal patterns. The present study, therefore, explores the impact of geographic and stratigraphic sampling density on detrital zircon provenance, based on a high-density investigation of U-Pb ages (N = 23, n = 4905) obtained from a narrow chronostratigraphic range (∼2 m.y.) within a relatively small (∼25,000 km2) area of an Eocene nonmarine sedimentary basin. Based on multi-dimensional scaling and DZmix modeling, these strata comprise seven distinct, approximately isochronous detrital zircon (DZ) chronofacies, defined as “. . . a group of sedimentary rocks that contains a specified suite of detrital zircon age populations” (Lawton et al., 2010). Four of these DZ chronofacies reflect long-distance transport from extrabasinal source areas. DZ chronofacies CO-1 and CO-2 are interpreted to derive from a primary sediment source in central Colorado (USA), corroborating previously proposed long-distance sediment transport via the Aspen paleoriver. DZ chronofacies ID-1 and ID-2 are interpreted to have been delivered to the basin from central Idaho by the Idaho paleoriver. In contrast, DZ chronofacies UT-1 and UT-2 are interpreted to reflect local drainage from the Uinta Uplift south of the basin, and DZ chronofacies WY-1 is interpreted to have been sourced from the Rawlins, Granite, and Sierra Madre uplifts to the north and east via the Toya Puki paleoriver. Lateral transitions between different DZ chronofacies in some cases occur over distances as little as 5 km, implying that depositional systems carrying sand from disparate watersheds directly competed to fill available basin accommodation. The results of this study reveal a high degree of complexity of Eocene rivers that converged on the Greater Green River Basin, indicating that their deposits contain a rich record of fine-scale landscape evolution across much of the Laramide foreland and Cordilleran orogen. These results illustrate the need for adequate sample density when assessing basin-scale provenance and offer a cautionary consideration for researchers using sandstone (and incorporated authigenic cement) in other nonmarine basins as the basis for paleoaltimetry or detrital thermochronology studies. 
    more » « less
  3. Mineralogy, petrographic textures, and sedimentary structures from the world’s largest trona deposit, the Wilkins Peak Member (WPM) of the early Eocene Green River Formation (GRF), Bridger subbasin, Wyoming, provide key data about depositional conditions and paleoenvironments. The 250 m-long WPM interval in the Solvay S-34-1 drill core analyzed in this study contains a detailed record of sedimentation in the Bridger subbasin at the deepest area of a hydrologically-closed basin during peak Cenozoic atmospheric CO2 concentrations. Large accumulations of trona (Na3(HCO3)(CO3)·2H2O), shortite (Na2Ca2(CO3)3), northupite (Na3Mg (CO3)2Cl), and halite (NaCl; now replaced by trona), occur in the lower half of the WPM. Modern saline lake environments such as Lake Magadi, Kenya, and the Dead Sea, Israel-Jordan, are useful analogues for interpreting paleolake conditions associated with evaporite deposition in the Solvay S-34-1 core. Solvay saline lake deposits are organized into meter-scale shallowing-upward successions, beginning with (1) oil shale overlain by (2) trona, in places interbedded with oil shale, followed by (3) peloidal dolomite grainstone and/or silty dolomitic mudstone, and (4) massive mudstone with disruption features or desiccation cracks, and/or siliciclastic sandstone with ripple cross-stratification. Based on observations of modern hypersaline lake environments, WPM evaporite deposition at the basin depocenter is interpreted to be controlled by inflow water composition and volume, evaporative concentration, and seasonally-driven lake temperature fluctuations, resulting in recurrent patterns in evaporite mineralogies and textures. 
    more » « less
  4. Abstract Eocene strata of the Elko Formation record lacustrine deposition within the Nevada hinterland of the North American Cordillera. We present a detailed geochemical stratigraphy enabled by high‐sampling‐resolution geochronology from lacus trine limestone and interbedded volcanic rocks of the Elko Formation. Two intervals of lacustrine deposition, an early Eocene “Lake Adobe” of limited aerial extent and a laterally extensive middle Eocene “Lake Elko,” are separated by ∼5 m.y. of apparent unconformity. Sediments deposited in the apparently short‐lived (49.5–48.5 Ma) early Eocene Lake Adobe exhibit high‐amplitude covariation of δ18O, δ13C and87Sr/86Sr, which suggests a dynamically changing catchment and precipitation regime. Lake Elko formed during the middle Eocene, and its strata record three geochemically distinct phases, indicating it was a single interconnected water body that became increasingly evaporative over time. The lower Elko Formation (44.0–42.5 Ma) was deposited in a freshwater lake. Middle Elko Formation (42.5–41.2 Ma) lithofacies and geochemistry suggest that an increasingly saline and alkaline Lake Elko experienced salinity stratification‐induced hypolimnion disoxia and burial of12C‐rich organic matter. The upper Elko Formation (41.2–40.5 Ma) records a shallow final phase of Lake Elko that experienced short residence times and a breakdown in stratification. A sharp decline of87Sr/86Sr in the upper Elko Formation reflects an increasing aerial extent of low‐87Sr/86Sr volcanic deposits from nearby calderas. Middle Eocene strata record ponding of paleodrainage, increasing hydrologic isolation and volcanism, consistent with progressive north to south removal of the Farallon flat slab and/or delamination of the lower lithospheric mantle of the North American plate. 
    more » « less
  5. Abstract The Ancestral Rocky Mountains system consists of a series of basement-cored uplifts and associated sedimentary basins that formed in southwestern Laurentia during Early Pennsylvanian–middle Permian time. This system was originally recognized by aprons of coarse, arkosic sandstone and conglomerate within the Paradox, Eagle, and Denver Basins, which surround the Front Range and Uncompahgre basement uplifts. However, substantial portions of Ancestral Rocky Mountain–adjacent basins are filled with carbonate or fine-grained quartzose material that is distinct from proximal arkosic rocks, and detrital zircon data from basins adjacent to the Ancestral Rocky Mountains have been interpreted to indicate that a substantial proportion of their clastic sediment was sourced from the Appalachian and/or Arctic orogenic belts and transported over long distances across Laurentia into Ancestral Rocky Mountain basins. In this study, we present new U-Pb detrital zircon data from 72 samples from strata within the Denver Basin, Eagle Basin, Paradox Basin, northern Arizona shelf, Pedregosa Basin, and Keeler–Lone Pine Basin spanning ∼50 m.y. and compare these to published data from 241 samples from across Laurentia. Traditional visual comparison and inverse modeling methods map sediment transport pathways within the Ancestral Rocky Mountains system and indicate that proximal basins were filled with detritus eroded from nearby basement uplifts, whereas distal portions of these basins were filled with a mix of local sediment and sediment derived from marginal Laurentian sources including the Arctic Ellesmerian orogen and possibly the northern Appalachian orogen. This sediment was transported to southwestern Laurentia via a ca. 2,000-km-long longshore and aeolian system analogous to the modern Namibian coast. Deformation of the Ancestral Rocky Mountains slowed in Permian time, reducing basinal accommodation and allowing marginal clastic sources to overwhelm the system. 
    more » « less